Two-axis control of a singlet-triplet qubit with an integrated micromagnet.
نویسندگان
چکیده
The qubit is the fundamental building block of a quantum computer. We fabricate a qubit in a silicon double-quantum dot with an integrated micromagnet in which the qubit basis states are the singlet state and the spin-zero triplet state of two electrons. Because of the micromagnet, the magnetic field difference ΔB between the two sides of the double dot is large enough to enable the achievement of coherent rotation of the qubit's Bloch vector around two different axes of the Bloch sphere. By measuring the decay of the quantum oscillations, the inhomogeneous spin coherence time T2* is determined. By measuring T2* at many different values of the exchange coupling J and at two different values of ΔB, we provide evidence that the micromagnet does not limit decoherence, with the dominant limits on T2* arising from charge noise and from coupling to nuclear spins.
منابع مشابه
Preparing, manipulating, and measuring quantum states on a chip
We use gate voltage control of the exchange interaction to prepare, manipulate, and measure two-electron spin states in a GaAs double quantum dot. By placing two electrons in a single dot at low temperatures we prepare the system in a spin singlet state. The spin singlet is spatially separated by transferring an electron to an adjacent dot. The spatially separated spin singlet state dephases in...
متن کاملScreening of charged impurities with multielectron singlet-triplet spin qubits in quantum dots
Charged impurities in semiconductor quantum dots comprise one of the main obstacles to achieving scalable fabrication and manipulation of singlet-triplet spin qubits. We theoretically show that using dots that contain several electrons each can help to overcome this problem through the screening of the rough and noisy impurity potential by the excess electrons. We demonstrate how the desired sc...
متن کاملHarnessing the GaAs quantum dot nuclear spin bath for quantum control
We theoretically demonstrate that nuclear spins can be harnessed to coherently control two-electron spin states in a double quantum dot. Hyperfine interactions lead to an avoided crossing between the spin singlet state and the ms=+1 triplet state, T+. We show that a coherent superposition of singlet and triplet states can be achieved using finite-time Landau-Zener-Stückelberg interferometry. In...
متن کاملElectric-Field-Induced Triplet to Singlet Transition in Size-2 Trigonal Zigzag Graphene Nanoflake
Using Hartree-Fock Su-Sheriffer-Heeger (HF-SSH) model, we have studied the dependence of the energies of the ground (magnetic triplet state) and the first exited (nonmagnetic singlet state) states of the size-2 trigonal zigzag graphene nanoflake (size-2 NF) on the intensity of an external in plane static electric field at zero temperature. We identify a transition from the magnetic triplet stat...
متن کاملCharge-state conditional operation of a spin qubit.
We report coherent operation of a singlet-triplet qubit controlled by the spatial arrangement of two confined electrons in an adjacent double quantum dot that is electrostatically coupled to the qubit. This four-dot system is the specific device geometry needed for two-qubit operations of a two-electron spin qubit. We extract the strength of the capacitive coupling between qubit and adjacent do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 33 شماره
صفحات -
تاریخ انتشار 2014